31 research outputs found

    Reductive Decomposition of Nitrite in a Continuous-Flow Reactor Using Fixed-Bed Structured Pd Catalysts

    Get PDF
    In order to decompose trace amounts of nitrite in drinking water under mild conditions, a fixed-bed filtering system that used structural catalysts was employed to filter recycled aqueous nitrite. High performance and continuous mass processing are generally accepted as requirements to catalyze the decomposition of aqueous nitrite. However, the use of a fixed-bed operation when recycling aqueous nitrite with palladium catalyst systems could result in either negligible activity when using a carbon monolith impregnated with Pd, or could stop the flow by enhancing the pressure drop when using non-porous alumina spheres coated with Pd/C or structured catalysts consisting of a polyurethane sponge skeleton impregnated with Pd. In the present paper, a Si/SiC ceramic filter was employed as a structured support to prevent pressure drop. When palladium was loaded onto the surface of the filter via electroless plating, continuous flow suitably continued, and the conversion of nitrite was 45% after 60 min. In contrast, when palladium was loaded after the coating of the filter with alumina, complete decomposition was achieved after 60 min under conditions corresponding to those used for the former system. X-ray diffraction, an N2 adsorption-desorption measurement, scanning-electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that a higher dispersion of palladium on the latter structured catalyst resulted in the greatest level of activity for the reductive decomposition of aqueous nitrite

    Photoemission Angular Distribution Beyond the Single Wavevector Description of Photoelectron Final States

    Full text link
    We develop a novel simulation procedure for angle-resolved photoemission spectroscopy (ARPES), where a photoelectron wave function is set to be an outgoing plane wave in a vacuum associated with the emitted photoelectron wave packet. ARPES measurements on the transition metal dichalcogenide 1T1T-TiS2\mathrm{Ti}\mathrm{S}_2 are performed, and our simulations exhibit good agreement with experiments. Analysis of our calculated final state wave functions quantitatively visualizes that they include various waves due to the boundary condition and the uneven crystal potential. These results show that a more detailed investigation of the photoelectron final states is necessary to fully explain the photon-energy- and light-polarization-dependent ARPES spectra.Comment: 6+14 pages, 4+15 figure

    Broken Screw Rotational Symmetry in the Near-Surface Electronic Structure of ABAB-Stacked Crystals

    Full text link
    We investigate the electronic structure of 2H2H-NbS2\mathrm{Nb}\mathrm{S}_2 and hhBN\mathrm{BN} by angle-resolved photoemission spectroscopy (ARPES) and photoemission intensity calculations. Although in bulk form, these materials are expected to exhibit band degeneracy in the kz=π/ck_z=\pi/c plane due to screw rotation and time-reversal symmetries, we observe gapped band dispersion near the surface. We extract from first-principles calculations the near-surface electronic structure probed by ARPES and find that the calculated photoemission spectra from the near-surface region reproduce the gapped ARPES spectra. Our results show that the near-surface electronic structure can be qualitatively different from the bulk one due to partially broken nonsymmorphic symmetries.Comment: 6+11 pages, 4+13 figure

    Spin-polarized saddle points in the topological surface states of the elemental Bismuth revealed by a pump-probe spin-resolved ARPES

    Full text link
    We use a pump-probe, spin-, and angle-resolved photoemission spectroscopy (ARPES) with a 10.7 eV laser accessible up to the Brillouin zone edge, and reveal for the first time the entire band structure, including the unoccupied side, for the elemental bismuth (Bi) with the spin-polarized surface states. Our data identify Bi as in a strong topological insulator phase (Z2Z_2=1) against the prediction of most band calculations. We unveil that the unoccupied topological surface states possess spin-polarized saddle points yielding the van Hove singularity, providing an excellent platform for the future development of opto-spintronics.Comment: 6 pages, 4 figure

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001.Peer reviewe

    Gaussian Fourier Pyramid for Local Laplacian Filter

    Full text link
    Multi-scale processing is essential in image processing and computer graphics. Halos are a central issue in multi-scale processing. Several edge-preserving decompositions resolve halos, e.g., local Laplacian filtering (LLF), by extending the Laplacian pyramid to have an edge-preserving property. Its processing is costly; thus, an approximated acceleration of fast LLF was proposed to linearly interpolate multiple Laplacian pyramids. This paper further improves the accuracy by Fourier series expansion, named Fourier LLF. Our results showed that Fourier LLF has a higher accuracy for the same number of pyramids. Moreover, Fourier LLF exhibits parameter-adaptive property for content-adaptive filtering. The code is available at: https://norishigefukushima.github.io/GaussianFourierPyramid/

    Extracting the Secrets of OpenSSL with RAMBleed

    No full text
    Concomitant with the increasing density of semiconductors, various attacks that threaten the integrity and security of dynamic random access memory (DRAM) have been devised. Among these, a side-channel attack called RAMBleed is a prolific one that utilizes a general user-level account without special rights to read secret information. Studies have reported that it can be used to obtain OpenSSH secret keys. However, a technique for deriving the Rivest–Shamir–Adleman (RSA) secret keys used in OpenSSL under realistic parameters and environments has not been reported. We propose a method that uses RAMBleed to obtain OpenSSL secret keys and demonstrate its efficacy using the example of an Apache server. The proposed method exploits the fact that, in the operation of an Apache server that uses OpenSSL, the RSA private keys are deployed on DRAM at a set time. Although the result of reading this secret information contains a few errors, error-free secret information is obtainable when it is used with RSA cryptanalysis techniques. We performed a series of attacks incorporating RAMBleed and eventually retrieved the OpenSSL RSA private key, indicating that secret information is obtainable with high probability. The proposed method can easily and externally be executed without administrator privileges on a server using DRAM that is vulnerable to RAMBleed, showing that RAMBleed is also a major threat to OpenSSL
    corecore